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Abstract

In evaluating effective reaction rates in catalysts subject to heat and mass transport limitations, the size of the catalytic body is best defined
by the so-called characteristic lendttthe ratio between catalyst volume and its external surface &#84,/S,. This result follows from the
limiting behaviour at very high reaction rates, when the effective reaction rates are proportiordlet@ 1/Aris [R. Aris, The Mathematical
Theory of Diffusion and Reaction in Permeable Catalysts, Oxford University Press, London, 1975.]) or, in dimensionless form, to the inverse
of the Thiele modulu®. It is further known from simple geometrical shapes that a series solution can be written in terms of power} of (1/
and that the second order term [in$)7] depends on the shape of the catalytic body. It is the aim of this paper to develop expressions of such
second order term for 2D or 3D catalytic bodies showing arbitrary smooth external surfaces.

In a similar way as the first order term allows to define the proper size of a catalyst, the second order term provides a characterization for
the catalyst shape. This and other applications of the second order term are discussed.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction few isolate calculations should be made. However, relatively

novel catalytic reactors, as reverse-flow reactors and reactive
Except for the case of spheres, diffusive transport of reac- distillation processes, or more sophisticated models for tradi-

tants in most kind of commercial catalytic pellets proceeds tional reactors, including CFD (computational fluid dynam-

along more than one spatial coordinate. The general case willics) simulations, can demand thousands, or higher orders,

be a 30 problem (e.g., a trilobe pellet), while 2D problems
will be frequent, mainly due to axisymmetry (e.g., circular
cylinders) and will also apply for monolith reactors with cat-
alytic washcoat on non-circular chann{2s.

Numerical codes and computer facilities have been devel-

of spatial and temporal discretization points, in which the
effective reaction rates should be evaluated. In addition, the
occurrence of multiple reactions will strongly enhance the
computational demand.

Itwill be then highly desirable, or even necessary, to avoid

oped up to such an extent that 2D and 3D problems arethe use of 2D or 3D computations. This is actually feasi-

not computationally challenging problems, provided that a

* Corresponding author. Tel.: +54 22142113583; fax: +54 2214254277.
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ble, largely because it is a well-known fact that if the results
from different catalytic bodies are compared in terms of the
characteristic length=V,/S,, the effect of the shape is tem-

pered.Table 1shows deviations between the behaviour of

1 “3D” means that no suitable coordinate system can be chosen to reducey g|aph (the simplest 1D geometry) and a circular cyIinder of

from three the number of coordinate directions taken by the flux of reactants.
1D or 2D applies when either one or two suitable coordinate directions can
be found (e.g., axisymmetric problems will be 2D and problems on a sphere
will be 1D).

1385-8947/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cej.2005.04.013

height/radius ratio = 1.7 (a 2D problem) compared atthe same
¢ for different kinetics (precise definition ofY) is given in
the next section).
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Nomenclature

a

Rhigh

Greek letters

14
r

Th, Ta Tp curvatures definedin Eg®), (9d) and (9e)

Ts
A
As

T

Yj

catalytic activity (dimensionless)

local catalytic activity orfy, (dimensionless)
molar concentration of speciggmol m—23)
=|ox/0¢j|, scale factor in the coordinate direc
tion & (dimensionless)

parameter defined in E{L3b)(dimensionless)
parameter defined in E¢L9a)(dimensionless)
parameter defined in E¢Ld) (molm~1s1)
effective thermal conductivity (WC~1 m—2)
local mass transfer coefficient of specigs
(ms™)

=Vp/S,, characteristic length (m)

Laplacian operator (ITf)

normal unit vector org, (dimensionless)
molar flux of specieg(molm—2s1)

heat flux (W n12)

= a(Y)/7as, relative reaction rate (dimension
less)

= I»/11 (dimensionless)

overall consumption rate in the asymptoti
regime (mols?)

principal radii of curvature (m)

(@]

external surface area of the catalytic body

accessible to reactants gn

temperature (K)

volume of the catalytic body (A)

=(X1, X2, X3), Cartesian coordinate vector (m)

dimensionless concentration defined in Eg.

(1c)

geometric parameter (dimensionless)
parameter defined in EQR1) (dimensionless)

(m™)

sum of local principal curvatures &) defined
in Eq.(14b)(m™1)

global reaction scale, defined in E&d) (m)
= A/aléz, local reaction scale &, (m)
specific consumption rate of specieg
(molm—3s71)

stoichiometric coefficient of speci¢¢dimen-
sionless)

=((m4s/J4)Y?, Thiele modulus (dimension-
less)

effectiveness factor (dimensionless)
geodesic curvature ()

principal curvature (m?)

coordinate in the direction(m)

=&nh/As, stretched coordinate (dimensionless

Subscripts

av average ove,

a,b directions of the lines of curvature
e chemical equilibrium

F average in the fluid phase

high asymptotic regime

n normal direction

S external surface

Different readings can be made from the datdable 1
Advocating the existence of other sources of uncertainty, as
kinetics itself, the shape effect may be regarded as being
tolerable for rough and fast estimations. However, when sim-
ulating a complex catalytic process, the magnitude of the task
will prompt for eliminating as many sources of uncertainty
and inaccuracies as possible. Within this frame, the foregoing
data indicate that the effect of shape cannot be ignored and
that in order to avoid 2D or 3D calculations it will be neces-
sary to have available criteria to choose a suitable geometrical
simplification.

A suitable geometric characterization of the catalyst shape
can be obtained from the expansion of the effectiveness factor
at high reaction rates. The second term in such an expansion
has been clearly identified for 1D geometries. For the case
of a single reaction and uniform activity (see §35]) the
effectiveness facton for high values of Thiele modulug
can be expressed as:

I R
o
1"=0+1 (1b)

whereI; andR are coefficients depending on the type of
kinetic law (all quantities in Eqqg1a) and (1bwill be pre-
cisely defined in the next sections) asnds the geometric
parameter for simple geometries=0, 1, 2, for a slab, a
long circular cylinder and a sphere, respectively.

This paper is devoted to the development of an expres-
sion for evaluating the geometrical paramdfefor catalytic
bodies showing smooth external surfaces of arbitrary shape.
Such expression is not available in the open literature, to the
best of our knowledge. The effect of a non-uniform field of

Table 1

Maximum relative differenceA) between the effectiveness factor of a slab
(1D) and a circular cylinder of ratio height/radius =1.7 (2D), compared at
the same

r(Y) A (%)
Y2 18
Y 19
Y1/2 22
1(if Y>0) 34

36Y/(1 +5Y) 38
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catalytic activity will be included in this task; hengewill The above underlined procedure formally allows to choose
account for both, geometrical and activity field effects. Ca as the only independent state variable. All others will be

Given the assumption of smooth external surfaces (i.e., expressed as a function@f. Hence, the consumption rate of
without edges), it is convenient to consider briefly the rele- A (ra) can also be written as a function©f only. Note that
vance of practical catalysts showing this property. Structured wa(Cae) = 0. We can also writdNa = —D(Ca)VCa, whereD
catalystg6] are probably the most important type of catalysts can be also expressed as a functio&gfonly. Botha and
presenting smooth surfaces. In many instances, the catalysD will further depend on the values of the state variables at
is deposited on a thin and uniform layer and therefore they the external surface and on the true transport coefficients,
can be analysed as a 1D geometry. However, in monolithic as defined by the transport model. The following change of
reactors, the catalytic washcoat deposited on the wall of thevariables (fromCa to Y) will be useful:
channels can show uneven thickness, as for the usual trian- C
gu_Iar or squared cross-section channels. In thes_e cases, th; _ i/ D(C4)dCa (1c)
thickness at the corners can be an order of magnitude higher Ja Je
than on the sides of the channels, and a 2D analysis is defi-
nitely required.

Apart from spheres, most existing shapes of commercial
particulate catalysts (pellets or tablets) correspond to cylin-
ders with a variety of cross-section shapes. They do not Hence,Na=—J,VY. In turn, we can writera =ma(Y) and
show smooth external surfaces, due to the edges around théefiner =r(Y) =ma(Y)/zas, whereras is the value ofra at
bases. Suitable values &f for geometries showing edges the external surface. As a consequentel andr(1)=1on
are obtained by adding a correction term to the expressionthe external surface. At equilibrium conditions (eventually,
here obtained. These results will be presented in a separat&vell inside the catalytic body)'=0; r(0) =0.
contribution. The previous manipulations allow to transfer the stoi-

In the next sections, the expression fomwill be devel- chiometry and transport complexities to the evaluation of
oped on the base of assuming that a single reaction takeghe dimensionless rawY). This is assumed to be accom-
place. Nonetheless, it is shownAppendix Cthat the same  Plished as an initial step, independently of reaction/transport

expression holds up for a system with multiple reactions.  interactions within the domain of the catalyst geometry.
As an elementary example, for the simplest transport mod-

elsNj = —DjVC;j, = —ketV T, with constanD; andker.

Ae

Cus
Ja = / D(C.)dC (1d)

Cae

2. Problem statement

Dy v
Ci—Cigs)= ——(Ca — Cyus);
(j ]S) D VA(A AS)

A single catalytic reaction and the following restrictions J
will be considered in most part of this contribution (the sig- D4 (—AH) )
nificance of these assumptions will be discussed later on): T -Ts) = et (Ca = Cas);
(a) Uniform composition and temperature atthe external sur- y— Ca—Cae . Js = Da(C c
face of the catalyst. = Cas—Cao’ 4 = Da(Cas — Cae)

(b) Constitutive equations for the fluxes (transport model) ) )
are isotropic and intrinsically independent of position The steady state conservation balance for spetiesn be
inside the catalyst. written,

Under these conditions, the stoichiometric relations for
fluxes inside the catalyst hold up irrespective of catalyst
geometry and of the transport model employed to describe the,, 1 ons (2b)
fluxes inside the cataly$t,8]. Thus, ifA is the key species, - P
that will be assumed to be the limiting reactaitjs the flux VY =0, onSy (2c)
of a generic species andyj its stoichiometric coefficient,

Nj = (vj/va)Na. One of these relations (spy= h) canbe asso-  where L is the LaplacianV, the volume of the catalytic
ciated with the heat flux{v, = reaction heat). Once a trans- body,S; its external surface (accessible to reactaigs)s a
port model (e.g., the dusty gas model) is chosen to expresssealed (inaccessible to reactants) portion oMpeoundary
eachl; interms of the gradients of all state variables, the stoi- [Remark: symboV,, will stand for both, the spatial domain
chiometric relations can be integrated subject to pellet surfacecorresponding to the catalyst and its volume; similagy,

conditions, butindependently of spatial coordinates, to relate stands for the domain of the permeable external surface and
the concentration of each species and temperature with thefor its area],

concentration of, Ca. Inturn, the chemical equilibrium con-
ditiqn will e_llloyv to evaluate thg equil!brium set of variables ;2 _ Ja © A : global reaction scale (2d)
attainable inside the catalyst, in particular the valjg. TTAS

L(Y) = rlza(x)r(y), onv, (2a)
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and the activitya, a function of the spatial coordinate vector
X = (X1, X2, X3), IS assumed to be normalized according to:

Vip/a(x) dv=1
Yo

It is assumed that the activity at any point on the external
surface is finite, but not necessarily uniform.

(2e)

3. Asymptotic behaviour at high reaction rates
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position of a point inside the catalyst, but sufficiently close
t0 S, can be expressed as:

X = Xs(&1, £2) + &n(é1, &2)

wherexs(&1, £2) is the Cartesian vector describing the posi-
tion onS, in terms of coordinateg{, £2) andn(£, &5) is the

unit vector (n| = 1) normal toS, at the same position, which

is oriented towards the inside of the pellet. The new set of
curvilinear coordinatestf, &1, £2) is defined by transforma-
tion (4a) The coordinaté,, has been completely defined, but
(&1, &2) still have to be identified in order that the coordinate
system may be orthogonal. We will analyse this feature next,

(42)

The local reaction scale at the surface is defined asWwhile the feasibility of transformatiof#a)will be considered

AS:A/afls/z, whereag is the local value ofa at the exter-
nal pellet surface. Wheks is small enough, specigswill

after.
The orthogonality condition requires that the internal

penetrate only a short distance from the external surfaceproduct Px/d&)-(9x/95j) =0, if i #j. Applied to §, j)=(1,

before reaching nearly equilibrium conditions (i.€5>0).

It is well known that the local flux can be approximated by

Nas,0= Jao1/As (See e.g[l1]), whereas just depends on the

form of r(Y). At these conditions, hereinafter called limiting

regime, the order of magnitude of the penetration depth.is
The results for geometries with a high degree of symmetry

(e.g., a sphere, a long circular cylinder, and a slab) indicate — -

that at somewhat larger values o, an expansion of the
following type holds up,

JA
Njs = A_s[al + agis + o(As)] (3a)
where, in general(x) denotes a truncation term such that
[o(x)/x] — 0if x— 0, the coefficien&, depends on the form
of r(Y), but also on the pellet shape and on the activity gra-

dient at the surfacg7,8]. Conditions at whictv(As) can be
neglected in Eq(3a), but (@21s) cannot, will be referred

n), the product becomesdfs/o&1) + En(an/d&1)]-n(E1, £2),
that always will be zero because both vectarss(d1) and
(on/d&1), lie on the surface (see e[§]) and, hence, they are
normal ton. The same applies for,{) = (2,n). The remaining
condition is that fori( j) = (1, 2),
an
- — + ‘i:n -

0X 0Xs on
_(Zs Y. —0 (4b
% % (asl +4 asl) (asz asz> (4b)

Making &,=0, we conclude that the directions éf, &2
on the external surface should be orthogonal in order that
(0xs/0€1)(0xs/0€2) = 0. It is further needed that fgr, >0

oXs an

dXs dn _
0L 08 0 1

Except wher, is a plane or a sphere, the theory of surfaces
(see e.g[9], p. 139) reveals that E¢4c) holds if and only
if both families of curves org, defined by, = const. and

0Xs

(4c)

to as asymptotic regime and the corresponding flux denotedé2 = const., coincide with the lines of curvature. Aline of cur-

Nas,high We will present a formulation foa, and for the
integral ofNas highoverS,,

Rhigh = /NAS,highdS (3b)

Sp

The task of developing Eq3b) is restricted in this paper
to catalysts with smooth external surfaces showing continu-
ous curvatures. We will come back to the latter restriction in
Sectiond.

3.1. Expressing the Laplaciai(Y)

To formulate the conservation balances in the asymptotic
regime, it is convenient to define a system of orthogonal
curvilinear coordinates in which one of theg, keeps the
direction of the normal at any point d&, where its origin
(én=0) is defined. Furthermore, the sense and scaig afe
fixed by stating that it grows towards the inside of the pellet
while measuring at each point the distance figyrWith this
definition, the Cartesian vector= (X1, X2, X3) defining the

vature is acurve onasurface suchthatatany pointits direction
corresponds to the direction of a principal curvathi@ne set

of curves corresponds to the minimal normal curvature and
the other to the maximal one. Both sets are mutually orthog-
onal and unique for a given surface. Then, we are constrained
to choose a pair of curvilinear coordinates, dendtgdnd

&p, each one parameterizing each set of lines of curvature.
For &, andép, the relation$n/ag; = —k;oxs/og; (i=a, b) hold

[9], wherex; is the principal curvature in the direction §f
Then, the set of coordinates,( &,, &p) Will be orthogonal.

In case of a plane or a spherical surface the concept of
lines of curvature looses its meaning (as the value of the
normal curvature is independent of direction), but any pair
of orthogonal coordinates satisfigs/og; = —koxs/d&; (k is
the unique value of normal curvature). We will continue the

2 For a pointP on a surface, assume the normal unit veatiridentified.
Then, a normal plane & is any plane containing (there is a bundle of
such planes), a normal sectiorPais a curve resulting from intersecting the
surface and a normal plane, a normal curvature is the curvature of a normal
section atP, a principal curvature is either the minimum or the maximum
normal curvature, a radius of curvature is the inverse of a normal curvature.
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present discussion with the general case in mind, but the for-
mulation will remain valid for a plane or a spherical surface
by replacing £, &p) by any orthogonal pairg, £2).

The scale factordh; =|0x/0&;| of the coordinates are
defined by expressing the elementary arc length in the direc-
tion of each;: ds =|9x/d&i| d&;. From Eq.(4a), with (&1,
£2) = (€a 0):

hi = hs,i(1— &,k;),

wherehs; = |9xs/0&i| (i=a, b) are the scale factors &,
which depend on the position defined gy, Ep).

Since a sense for the unit vectoihas been chosen, the
sign ofk; (i=a, b) becomes defined as positive if the centre
of curvature is oriented towards the inside of the pellet and
negative in the opposite case.

Egs. (5a) allow to visualize that the chosen coordinate
system will become unfeasible when any of the€i =a, b)
becomes nil. As we are interested in positive valueg, phe
coordinate system will be feasible only up to some distance
from S, if at least one of the; (i=a, b) is positive. If both
are positive, the system becomes unfeasibig ahy:

i=a b; h,=1 (5a)

(fork; > 0, i=am,&ma=mW&) (5b)
a,

whereR; = 1/k; (i =a, b) are the principal radii of curvature.
For general orthogonal curvilinear coordinates €2, £3),
the Laplacian of a fiel& can be written as:

(

Taking now our specific systengy, £, &p) and the fact that
hn =1 (Eq.(5a)),

3

L)=>)"

k=1

1 0
H 0§,

H oY

h_,f 3_§k (6a)

) i H = hihoh3

L(Y) = L,(Y) + LsKY) (6b)
where
0 Y
LN = e (o) (60)
1 0 Y 1 0 Y
Lsi!) = 4 o (”a—) i (”a—b> (6d)

The notatiords =h;d¢; (i =a, b) is employed in E6d). The
derivativedY/os is called physical derivative. It expresses the
variation ofY over an elementary arc of lengtpg;.

Ls(Y) is the Laplacian ofY on the internal surfaces
defined in Eq(4a)by &, = const., that are parallel . Eq.
(6d), specifically expresseksk in terms of coordinatest,

&p).

The following steps are devoted to removing the explicit
occurrence of the scale factotg, and hy in Egs. (6¢)
and (6d)and introducing curvature properties 8f. First,

Egs.(6c) and (6d)are re-written as:
3%y Y
L,(Y)=— —1,— 7a
)= 5z ~Tog, (7a)

45
d [dY )4
Lse(Y) = — | — ) =-7— 7b
1) = [as,(as,.) lasi] (7b)
i=ab
where
3 In(hahp) 9 In(hp)
Tn = a— — ;
0&n dsa
d In(h
1y = 10
0Sp

The quantityr’, can be directly evaluated by using Kga)
for hy andhy,

Ka
n =
1-&ka

+
1-&ukp

(8)

We again employ Eq5a)for expressindgrs and 7. For (,

=(@b)or(j)=(b,a):

_ -1 ahs,,» N ) aK,'
j= h_z (hlaé'J (1 —&uxi) hs,ién h18§]>
-1 dIn hs; & K )
= — 9
(1 — &ukj) ( hsjo&j (L — &uk;) hs jOE; (%)

which requires the evaluation 6hs;j/d5; anddxi/d&j (i #]).
To this end, the following formulation is used:

d1In hs;
i#£j): = —Kgq.i 9b
(£D: Goge = ke (9b)
3/(,'
s ;<o) )

Eq. (9b) arises from the definition of geodesic curvatuge

for any pair of orthogonal coordinates [Remark: at a given
point on the surfaceqy; is the curvature of the projection
of the coordinate curvg; on the tangent plane]. If the cur-
vature of the own coordinate line ig, then at the given
point: «7 + k5, = kZ,. Eq. (9c) arises from the formulae

of Mainardi—-Codazz[9] and is valid when the coordinate
curves are lines of curvature, and in the case of a spherical or
plane surface for any pair of orthogonal coordinates. Replac-
ing Eqs.(9b) and (9c)nto Eq.(9a), the following expressions
arise:

Kg’b

Ya= ——
S (9d)
K‘g,a
Tp=—"" 9
b= T e (9e)

With Egs.(8), (9d) and (9¢)the LaplacianL(Y) (Eqg. (6b))
becomes fully expressed in terms of curvature properties of
S,. Inturn, the conservation balance in Ega)becomes:

+ 2 [a ( ]

1
= 529Gn. &a. £o)r(Y)

92y

9E2

Y
" 0k,

d

asi

oY

oY
Bsi

)-7

i
Bs,-

(10)
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3.2. Reduction of Eq10)at low values of

Let us introduce in Eq(10):

e a =a(&n, &, &p)las: relative activity, whereas=a(0, &a,
&p). Ua

) Aszk/as/ - local reaction scale 08§,

e (=&pl)s: stretched coordinate.

Then,
92y £)4

ASY, — + )L%LSF(Y) = a*(gm &a, Eb)r(Y)

o~ o (11a)

Assuming that.s is small enough for the penetration depth

to be shorter than the thickness d of the pellet in the local

normal direction, i.e.
As K d (11b)

the appropriate boundary conditions on variableill be:

¢=0: v=1 (11c)
{—>o0: Y—>O0 <2—§)—>0 (11d)
Now, consider the following simplified problem,

i—? = r(Yo) (12a)
¢(=0: Yo=1 (12b)
{— o0 Yo — 0O, (dd_i;o> 0 (12¢)

that corresponds to the limiting regime previously defined.
The solution of Eqg(12)is well known (see e.d1] and also
Appendix B and can be expressed by:

dYo 1/2
— = —I(Yo)¥ 12
i = 1) (12d)
where
Yo
I(Yo) = 2/ r(Y)dy (12e)
0
In particular, the flux on the external surfa§g(¢ = 0):
Ja [ dYy Ja
Naso = _)»_s<d_§')§:0 = )L_Sll (13a)
n=[1()]"Y? (13b)

The following points are worth noting:

() ConditionsYy — 0 (dYp/d¢) — 0inEq.(12c)are already
satisfied, for practical purposes, whémeaches a few
units.

(I Yo, r(Yo) and the derivativesalfo/dc) and ©2Yo/dz?)
show maximum absolute values around the unity.

S.D. Keegan et al. / Chemical Engineering Journal 110 (2005) 41-56

For Eq.(12a)to approximate Eq11a)it is necessary that
IAsTnl <1, M3LsHY)| < 1, anda” ~ 1. These conditions
will be fulfilled for a sufficiently small value of.s. In what
follows, practical scales respect to whickshould be small
in order to guarantee those conditions will be determined.
At the same time, the terms of second order of magnitude
linking Egs.(12a) and (11aill be identified. This task will
allow us to write down a conservation balance describing
the asymptotic regime. In the next paragraphs, it should be
borne in mind that the solutio of the asymptotic regime
will keep the same order of magnitude¥as Then, points (I)
and (ll) stated above will hold up in the asymptotic regime
by exchangingrg for Y.

3.2.1. Analysis ofsT
From Eq.(8) a series expansion af, aboutt,, =0 can be
written (usingén =¢As)

o0

i+1

Ty=Ts+ Y ("
j=1

+ i 0sg) (14a)

whereY, |s,—0 = T, is the sum of the local principal curva-
tures
1

1
Ts=ka+kp=—+ —

14
R (14b)

[Remark: the quantity"s/2 is known as mean curvature]
We are looking for conditions at whidhsT | <« 1. From
the leading term in expansigh4a) it becomes apparent that

a necessary condition is thais7's| <« 1. If we define

Rm = min{|Ral, [Rp|} (14c)
an equivalent constraint is
As < Rm (14d)

In addition, if Eq.(14d)is fulfilled, we can write from Eq.
(14a)for small values of. (i.e., up to a few units),

A 2

S

AsY,, = AsTs+ ¢O |:<—> i|
Rm

[Remark: the symbob(x) is used throughout this text and
its appendices to denote a variable that takes values “of the
same order of magnitude &§.

It is also worth noting at this point that conditi¢th4d)
insures that Eq5b), which restrains the range of feasibility
of our coordinate system, will not be violated for significant
values ofz (up to a few units).

(14e)

3.2.2. Analysis ofa
A series expansion @ aboutt, = 0 can be written (after
replacingén = ¢As) and dividing byas

at =1+ <E> AsC + } <a—5> (rst)?>+... (15a)
as 2 \as
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where as = alg,=0, ag= (da/d,)le,=0 and generically ~ B.Theresultsis:

ag) = (9'a/d&!)|s,—o0. From Eq.(15a) a necessary condition N A pigh = _J_A<d_Y>

for a" =1 to be true is that: o As\d¢ /o
as I

As K — (15b) = Ja | 2ad? - (Ys+ As) (18)
lag| A S

If the magnitude of higher order derivatives is bounded as where)xgz)nlaé/2 was used, and

(/1) /as) = O(lay/as|), which will be usually accom- 1 1
plished, the inequalityl5b)guarantees that the sequence of I = I_/ [1(Y)]¥2dy (19a)
terms in Eq(15a)are of decreasing magnitude for small val- 1Jo
ues of¢ (up to few units). Then, it will be valid to write: ag
As=— (19b)
. e\ 2 2as
at=1+ (a—s> AsC 4 £20 [(ﬂ) :| (15¢) Terms of leading order of magnitud¥is/Rny), O(As|ag|/as)
as as have been neglected in E({.8). The term/>(T's+As) is a
second order correction to the limiting regime expression
3.2.3. Analysis of3Lsg(Y) (13a) _
Because of boundary conditiob), the Laplacian By integrating Eq(18), the total number of moles trans-

Lse(Y) =0 atS, (£,=0). Then, by recalling thatsr applies ferred per unit time through, in the asymptotic regime is:
in general £, >0) over surfaces parallel 18, it is difficult
to expect tha®3Lse(¥) can contribute significantly in Eq. 5 _ ; ¢ [11 1/2 LT }
. . o = - - +A
(11a) Provided that constrain{¢4d)and(15b)are satisfied high = 74°p | 5 (s oy = 12(Ts + As)ay
and that variations ofis and curvature radii oi%, are not where
extreme, it is shown idppendix Athat:

1/2 - 1/2
. . (@g?)p = 552 / agd?ds (20a)
A2LsH(Y) = O [ max S __, S 16a Sp
sterY) ( {(as/a’s)z Rmlas/dj| (162)
(Ys+ Ag)ay= S, " / (Ys+ As)dS (20b)
At these conditions&%LSF(Y) is correctly neglected for the 5,

limiting regime. o o
For the case of the asymptotic regiméLse(Y) canalso By definingR = /2/11, the characteristic length of the cata-
be neglected because only terms of secondary order of maglyst £ =Vp/S,, and

nitudes will be retained in Eq11a) ((Ys+ A
Therefore, taking in Eq. (11a) AsYnh~AsTs, r= ( 81/2 Slav (21)
a ~ 1+¢As(ag/as), and xéLSF(Y) ~0 (from Egs.(14e), (@5 )y
(15c) and (163) we obtain the desired conservation balance \ye can alternatively write foRp; oh
defining the asymptotic regime:
Ja Sp(aé/z)avll A
o’y dy as Rhigh= ——F— [1 - R—F} (22)
ez )Lsrsd—é_ = |:1 + AsC (a—)i| r(Y) (17a) A ¢
¢ s Employing the usual definition of the effectiveness fac-
with boundary conditions tor n=R/(masVp) and the Thiele modulugb? = (¢/r)? =
KZH’AS/JA,
t=0, v=1 (17b) 2
Il(aé/ )av R
Mhigh = ———— (1— =T (23)
dy 9 ) )
—>00:Y—0, <—>—>O; (17¢)
dg For the case of uniform activity:
3.3. Expressing the effective reaction rate in the (a=1) nhigh= h (1 — g1“) i T =4(Ts)ay (24)
asymptotic regime @ @

A perturbation analysis on EqEL7) consideringis as a 4. Discussion
small parameter can be carried out to obtain the leading terms
of the flux at the external surface. The derivation is similarto ~ The use of the lines of curvature as coordinates lines, as
that made by Wedel and LUy, and is detailed il\ppendix employed for the derivation of EQR2)—(24) strictly implies



48

Table 2
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Comparison of; for different shapes showin@=0.75;y: radius ratio;y: defined in the textA: maximum relative difference

Infinitely long solid cylinder

Hollow sphere with accessible cenyer0.1896

Hollow sphere with inert corg=0.6300

A (%) - 0.95 1.2
y 0.500 0.478 0.470
Table 3

Comparison of; for different shapes showin@=0.50;y: radius ratio;y: defined in the textA: maximum relative difference

Infinitely long hollow cylindery=0.5773

Hollow sphere with accessible cenyer0.3460

Hollow sphere with inert corg=0.7937

A (%)
14

0.15
0.412

0.412

0.30
0.407

thatS, should exhibit continuous normal curvatures over its

extension. However, this restriction can be relaxed by ask-

ing that the continuity condition holds within a number of

4.1. The use of as a shape factor

Buffham [10] defined a quantity called compactness to

sections in which the external surface can be divided; hence,characterize the shape of particles and discussed about its

admitting curvature jumps between sections.

For example, consider a pellet formed by a circular cylin-
der of heightH and radiusR, and two hemispherical heads
of the same diameter at both endiSg; 1). This surface is

potential use for a variety of technological and scientific
applications. In that paper, the use of compactness (here
denoted byQ) for the evaluation of effectiveness factor
in catalytic pellets with uniform activity was quantitatively

smooth, in the usual sense that the normal vector can beassessed. The relation betwe@rand the parameteF at
unambiguously defined at each of its points, but across bothuniform activity (Eq.(24)) is:

circles bounding the cylinder and the hemispheres the nor-

mal curvature in the direction parallel to the axis presents
a jump (between 0 and Ry). Egs. (22)—(24) can indeed
be straightforwardly applied to this geometry with no fur-
ther constraints than Egd.1b), (14d) and (15b)his seems
to contradict the condition for neglectingsY) (see also
Appendix A), requiring that curvatures do not undergo large
variations. However, when such variations are confined to
curves orf, (i.e., to a subset of lower dimension), as for the
circles in the example, they do not affect the overall validity
of Eqgs.(22)-(24)

For the catalytic body just considerells = 1/R, on the
cylindrical portion andr’s = 2/R, on the spherical caps. Then
I’ (Eq.(24)) becomes:

H 3H
(4 R) (44 %)
- 2
H
6(2 + R_p)
TakingH =0 in Eq.(25), we obtain the resulf” =2/3 for a

sphere, whileH — oo leads to the valud™ = 1/2 that holds
for an infinitely long circular cylinder.

(25)

Fig. 1. Sketch of the pellet formed by a circular cylinder and two hemispher-
ical heads.

(26)

The factor 3/2 renderQ=1 for a sphere. Buffhanjl10]
pointed out different reasons wigycan be suitable to repre-
sent the shape of particulate materials in several applications.

In particular, when considering different geometries rep-
resenting smooth catalytic pellets with the same valu®,of
a remarkable similarity was found for the effectiveness fac-
tor  of a first order reactiod,compared on the basis of the
same value ofb. The two series of results in his paper, for
Q=0.75 and 0.5, are summarizedTables 2 and 3where
y is a geometric parameter that allows approximatjnat
low values of® [1,5]. In particular, for a first order reaction,
n~1—yd2.

As pointed out by Buffhanjl0], the hollow sphere with
accessible center cannot be related to a real catalyst pellet,
but it provides a simple geometric alternative. The results in
Tables 2 and 3uggest tha (hence,l”) can be an excellent
correlator for the shape of catalyst pellets. Other examples,
including cylindrical pellets of finite length and different
cross sections can be included, but this requires adding the
effect of edges. These results will be presented in a separate
contribution.

Nonetheless, counter-examples arise when considering
washcoats in monolithic reactors.Table 4 monoliths with
circular cross-section and square cross-section channels are
considered. The washcoat will be naturally circular in circu-
lar channels, but the washcoat tends to grow thicker at the
corners of square channels. The case consider&dlile 4

Q = 15I' = 3(Ys)ay

3 When invoking “first order reaction”, itis assumed that kCa, isother-
mal system and thdtia = —DaVCa, with constanDa; hence,Y=Ca/Cas,

r(Y)=Y.
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Table 4
Comparison of; for different shapes showin@=0.285 (" =—0.19);y=a/b;y: defined in the textA: maximum relative difference

Catalyst Cross-section Dimensions Y A (%)

Monolith channel square cross-section (SCS) y=0.96 0.779 -

y=0.306,c1=0.634ac,=0.634a  0.419  16.5(=1.42)

C2 2a C
Monolith channel circular cross-section (CCS) @ y=0.851 0.306 23.8%=1.42)
b a

is one of the four examples analised by Papadias ¢2Jl. shows that it can only provides a rough approximation for the
The third geometry is that of a four-hole-cylinder (accessible four-hole-cylinder.

from the outer and inner perimeters), and it closely corre-  The parameter” is just a geometric parameter when
sponds to the shape of a commercial pellet, although it is the activity is uniform, Eq(24), and it is composed of a
here assumed as being infinitely long. The three geometriesgeometric term plus an activity dependent coefficient when
presenQ=-0.285 (" =—0.19). The negative compactness the activity is not uniform (Eq(21)). Thus, in general, a

is a feature of washcoat geometries. Now, the effectivenessgiven catalytic body should have to be characterized, as
factors of a first order reaction show large discrepancies far as the high reaction rate behaviour is concerned, by
among the three shapes. The reason for this behaviour ishe combined effects expressed in the definition/bin

that the three geometries show considerable different val- Eq. (21).

ues of the parametep. In particular, a very high value Itis important to stress that the paramefteoccurs in the
of y arises for the washcoat in the square cross-sectionsecond order correction term of E@3) as a factor separa-
channel. ble from the factorR that depends on kinetic parameters.

These results indicate th@ or I", does not always suf-  Actually, this property allows the chance of characteriz-
fice to characterize quantitatively the behaviour of a catalytic ing a catalytic body by its value of", independently of
body. As parameter§ andy control the behaviour at high  kinetics. It is also worth recalling th& = /11 not only
and low reaction rates respectively, it seems to be necessarylepends on kinetic parameters, but on transport coefficients
that both should match (at least in an approximate sense) forand on the state variables & (except in some elementary
different shapes to show the same behaviour. This happensases).
in the examples offables 2 and 3but it does not hold in
Table 4 4.2. The use of Eq23)to complement numerical

We should emphasize at this point that the importance calculations
of being capable of characterizing geometrically a catalytic
body is that simple geometries can be employed to predict Irrespective of the use of as a shape parameter, Eq.
the behaviour of geometrically complex catalytic bodies. For (23) can be directly employed to evaluateprovided that
example, both the infinitely long four-hole-cylinder and the the appropriate conditions for its use have been reached. In
washcoat in the square cross-section channel are 2D bodiesparticular, for a precise evaluationgfa numerical solution
so it would be desirable to find a 1D body with an equivalent of the 2D or 3D conservation equations can be performed
shape and use it as a geometric model. For this case, thavhend is relatively low and Eq(23) can be used whe# is
hollow cylinder could have been such a model, but the result high, a strategy that will avoid the very high numerical cost
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demanded at high values®f For this application, itisimpor- wherek ; = fs kmj dS, and Rhigh is expressed by E¢22).
tant to recall the main constraints for E83) (as expressedin  Then P
Eqgs.(11b), (14d) and (15h}hat, in principle, should be sat-

isfied at each point 0f,. Because. = ¢/®, these constraints ) vi\ Ja (aé/ Z)avll

impose a lower limit on the values df. The minimumvalue ~ [{Cjs} : uniformonSp] (a) —

@, at which Eq.(23) can be employed varies, mainly with

_the geometry. For a first order reaction and uniform activ- [1 _ R&F} _ <ﬁ) (Cje— Cjs) (28b)
ity, ®m ~ 1 for a sphere ané, ~ 6 for the washcoat on the 14 Sp

square channel consideredTiable 4 According to our cal-
culations still in progress, these examples provide extreme
values ofdn,; more typical and frequent values abg, € [2,

2.5]. In any case, the magnitude of the second order correc-
tion (RI'/®) in Eq. (23) can reach in practice up to about
30%.

Eq. (28b)involves an overall sefCjs} that represents uni-
form state variables oves,.

In general, differences between values Ryfigh using
either local values of Cjs}(i.e., from of Eq.(27b) or an
overall set{Cjs}from (28b) will depend on the extend of
variations of the quantitie¢as, As, 1’s, kmj} over S,, but
also on the average impact of the external limitations. For
example, if we tolerate differences less than 2%, calculations
for a first order reaction show that if the net effect of external
limitations on Ryigh is not higher than around 10%, values
of km (uniformly distributed ovef,) can vary up to six-fold.

On the other hand, i, varies in less than around 2.5-fold,
the net external transport effect can be of any strength and

4.3. The effect of external transport limitations

Itis important to consider the influence that external trans-
port limitations can exert on the assumption about uniform
state variables o6, (assumption (a) in Sectia?). We first
note that Eq(18)for the local fluxNas high will be still valid
if the state variables are not uniform (except for extreme

i " Eq. (28b)will still be accurate.
gradients overs,). Hence, the local composition can be . .
. . Inpracticeky can effectively undergo strong changes over
evaluated from local conservation balances for each generic

species- S, (a brief discussion in this regard is given below) that will
P ¥ directly influence the results from E@7b) but variables
v _ of the catalyst sideas, As, T's, are not likely to cause a
<;) Nasigh = km;(CjF — C;s) (27a) similarinfluence. In fact, expressiofistd) and (15bjestrain
. . ) the effect ofAs and T's in the left-hand side of Eq27b)
where C_j,: is the average concentratlo_n_m the fluid phase to 20-30%, ands will be usually almost uniform. Hence,
andkn; is the local mass transfer coefficient fofRemark: we can conclude that the left-hand side of E2i7b) will
more general expressions for the external flux will not alter po ot 5 significant source for non-uniform valueg 6js}.
the significance of the present discussion; also, an expres—nerefore. instead of taking local valuesa¥ As and T's
sion ana_llog_ous to Eq27a)can be used for temperature]. Eq. (27b), it will be still accurate to take their averages
Expressing in Eq(27a)Nas highfrom Eq. (18) overS,. Thus, the approximate, but accurate, local condition
_ v suggested to replace EQ7b)is:
[{Cjs} : variable onSp] — ) Ja
VA

1/2
Ja Il(aS/ Jav

Vi
! {Cjs} : variable onS (_/)
X [“é/zjl —L(Ys+ As)} =kmj(Cjr—Cjs)  (27b) [{C; ol o .
A
If at least one quantity of the sgés, As, T's, kmj} changes X [1 - Rzr} = km;(Cjr — Cjs) (29)

over S, the local compositio{ Cjs} will vary over S,. In
any case, after solving E@7b)for {Cjs} (considering the ~ which shows that the meaning 6f will be preserved, even
dependence af4, I1, I and ), Nas nigh can be integrated ~ when{Cjs} varies onS,.
over S, to obtain Rnign. If this is our final purpose, the use- It seems appropriate at this point to consider briefly the
fulness of Eq(18) for Nas highis evident. actual magnitude of external transport limitations, at least
However, if {Cjs} turns out to be non-uniform, this pro- in the case of one-phase flow. In monolithic reactors, the
cedure preventshgh from being written in terms of the usual laminar regime and large ratios of channel to catalytic
parameted”, and its meaning as a relevant shape factor will cross-section areas increase the relative impact of external
become obscure without further analysis. With this purpose limitations, i.e., the asymptotic regime will be reached along
in mind, let us assume that uniform valugs} applyonan  with significant external effects. This can be checked by tak-
approximate basis. Then, instead of E2ja)we can use the  ing realistic values of geometric and transport properties in

overall expression: both, the channels and the washcoat. For the non-circular
channels studied by Hayes et |HI1], ky, evidenced signif-
<ﬁ) Rnigh = K ;(Cjr — Cjs) (28a) icant int_rinsic vari_ations around the perimeter. Noneth.ek_ass,
VA except in some instances of very strong external limita-
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tions (i.e., very low values o€Cas/Car) changes ofCas
around the perimeter were not larger th&i30% of the
average.

On the other hand, the impact of external limitations is
expected to be weaker in packed beds, since inertial or turbu-5. Conclusions
lent flow regimes prevail and ratios of catalyst to interstitial
volumes are large. Hence, it will be usual to find practi- ~ The main results of this paper are E¢&l)—(24)express-
cal cases combining the asymptotic regime and negligible ing the effective reaction rate in terms of ¢)/and (14p)
external limitations, although counterexamples cannot be for smooth 2D or 3D catalyst shapes. Conditions at which
ruled out. Local variations ok, around the particle take these expressions apply are termed asymptotic regime. Egs.
place primarily due to boundary layer effects that in turn (21)-(24)have been developed from the choice of a proper
depend on the influence of neighbouring particles (contact curvilinear coordinate system that facilitates introducing the
points) and on the shape of the particle. For example, Gille- condition of small penetration depth to approximate the con-

already possible, due to the local dependence of transport
parameters.

spie et al[12], measured heat transfer coefficients that var-

ied by a factor of 2—4 around a test sphere in a randomly

packed bed. As expected, the distributiorkgfnotoriously

servation equation by a unidirectional form (Esr)).
Significant restrictions for such approximation can be
expressed in terms of activity gradients at the external surface

changed with the specific location of the test sphere in the $ (Ed.(15b)), curvature properties &, (Eq. (14d) and the

bed.
We can conclude that the effect of external transport limi-

depth of the catalyst measured fr&n(Eq. (11b).
Parameter” (Eq. (21)) defines the magnitude of the sec-

tations cannot be ignored for fast reaction conditions as thoseond order correction and depends on the integral &yef
leading to the asymptotic regime, but instances of significant the average curvature and of the activity gradient. Based on

local effects will be scarce. In any case, it is most probable
that the role ofl" as a significant shape parameter will hold

up.
4.4. Extension to multiple reactions

So far, we have dealt with a single reaction. If a simple 1D
model is desirable for avoiding 2D or 3D calculations when
a single reaction takes place, much more significant will be
the possibility of such approximation for multiple reaction
systems. In principle, we should askif, just as defined
in Eq. (21), is also useful for characterizing such type of
systems.

Fortunately, the answer is affirmative, as shown in
Appendix C It is shown there that when the whole react-

qualitative arguments and for uniform activity, Buffh{h0]
proposed a quantity proportional fbas a general shape fac-
tor for granular materials and provided a number of examples
showing that the effectiveness factor for different geome-
tries with the same value df were very much the same at
any value of®. The expressions for the asymptotic regime
confirm that such parity among different geometries at least
requires thaf” be nearly the same, but it has been shown here
that the behaviour at low reaction rates, characterized by a
different shape facton) should also match. The importance
of defining suitable shape factors stems in the possibility of
finding 1D geometric simplifications for complex catalyst
shapes. The parameté&rwill be crucial to that end, and a
systematic study is being presently carried out. The current
investigation includes extending the analysis of the asymp-

ing system is in the asymptotic regime, the second order totic regime for catalyst shapes showing edges. In essence,

correction for all the effective reaction rates will depend
on the same parametér (see Eq. C17). The coefficients
that play the role ofl; and I> will be no longer avail-
able in a close way, but the rafnigh can be calculated
from a single 1D numerical evaluation, as explained in
Appendix C

thisinvolvesintroducing an additional term to the expressions
here developed.

Another important use of the expressions for the asymp-
totic regime is for complementing a numerical evaluation
of the conservation equation: a numerical method can be
employed for the relatively smooth concentration fields at low

The above discussion on the effect of external transport Values of®, while the asymptotic expression can be used at

limitations remains valid for multiple reactions, and expres-
sions similar to Eqs(27)—(29)can be written from the for-
mulation given inAppendix C

Assumption (b) in Sectior2, concerning the transport

large®, when steep (and difficult to evaluate) solutions take
place.

Although most of the material in this paper is discussed on
the basis of a single reaction, it has been showipendix

model inside the catalyst, deserves a final comment. It Cthatthe main conclusions hold for multiple reactions, if all

is shown in Appendix C for the general case of mul-

of them have reached the asymptotic regime: the significance

tiple reactions that 1D conservation equations and local Of parameter” is maintained and an equivalent formulation

flux expressions for the asymptotic regime (i.e., Egs.
(17a) and (18)for a single reaction and Eq$C9) and
(C16) of Appendix Cfor the general case) can be writ-

ten without the need of imposing assumption (b). Instead,

a closed equation foRhigh (e.g., as in Eq(22)) is not

applies. A general form of conservation equations (1D dif-
ferential equations holding on a local basis o8gy for the
asymptotic regime, without assuming uniform state variables
onS, and for an arbitrary transport model inside the catalyst,
is also presented iAppendix C
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Acknowledgements depend on the particular choice @fi( &2). If we take stan-
dard spherical coordinates with the equator passing through
The authors wish to thank the financial support of the the umbilic point, it can be shown theg; =0 at the umbilic
following Argentine institutions: ANPCyT- SECyT (PICT point for both,i=1, 2. Thus, the only relevant geometric
N# 14224) and UNLP (PID N# 11/1078). N.J.M., O.M.M.  quantity inLsr will be the radiusR,.
and G.F.B. are research members of the Conicet and S.D.K. With these considerations in mind, we will continue work-
is a fellow of the Academia Nacional de Ciencias Exactas, ing with the general case, # kp and keeping the estimate
Fisicas y Naturales. lkgjil = O(1/IRy), as the existence of umbilic points does not
introduce any essential singularity.
The magnitude of%LSF(Y) can be estimated by assum-

Appendix A ing in a first step that it is negligible and solving the resulting
equation (i.e., Eqs(17) in the main text). From the solu-
A.1. Order of magnitude estimate §LsH(Y) tion obtained, we should check in a second step if neglecting

A2Lse(Y) was sound.
In this appendix, we will undertake the evaluation of the ~ The type of solutions from Eqg(17) is analyzed in
magnitude oh2LsgY) in Eq. (11a)at low values ofi. To Appendix B Eg.(B13) can be written as:
this end, the concept of scale of variation will be useful. e
The s'cale.of variation pf a quantl@. in the direction of Y ~ Yo(2) + (hsTe)Yr(0) + ( S"s) Ya(?) (A1)
coordinatei, Ag; (=0), is such that it allows an order of as

magnitude estimate of the physical derivative, according to ) )
0(3QI3s) = Q/Ag;. where maximum absolute values of the functionig¢),

Consider first equatio9c) for estimating the order of ~ Yr(¢) andYa(¢) and of their derivatives respect éacan be
magnitude of the geodesic curvatukgs. We can rewrite the ~ regarded as being around the unity. Recalling ffagn/is

left-hand side of Eq(9c) as: andks:A/aé/z, it can be visualized from EqA1) that the
dependency ofY on the coordinateg, and &, will arise

di -1 OR throughout the dependency @ andas on them. We can
hs jOEj  R? hs joE, expressqY/ds) andd(dY/ds)/ds (i = a, b) from Eq(A1). For

example, the first derivates are
We will assume that the scale of variation of the radius of

curvatureR; will not be shorter thaifR;|. Cases not satisfying Y Y
this condition will be hard to find in catalytic bodies. hidE oS
TakingAg, ; ~ |Ri| (i=a, bj =a, b), we obtain an (usually)
upper estimate dkg;| from Eq.(9c): |«g,| = 0[/<i2/(;ca — kb))
Assuming thatc; andkyp are not very close to each other,
we can simplify this estimation by writinfxgi| = O(1/Rm), das s
whereRm =min{|Ral, |Ro|} (EQ. (14c)of the ginain text). x <_> +2s¥r(¢) <3_> +2sYa(?)
The estimatgi| = O(1/Ry), for i =a, b, will not longer , ,
hold around an umbilic point of the surface. An umbilic point % <% _ (“_S> das ) i=ab
is an isolate point on the surface at whiek=«y (equiv- asos; as) asds;)’
alently, R,=Ryp), and it is a singular point for the specific i i
coordinatesiy, £): along any direction on the surface lead- 1 N€S€ expressions and those #5Y/os)/ds (i=a, b) are
ing to an umbilic pointka— «p and for the coordinate curves, '€Placed in the definition alsx(Y) (i.e., in Eq.(7Db)) to esti-
hs;j — 0, kgj — oo (i =a or b). As a result, some of the terms mate the magnitude Q%LSF(Y_). The rgsultmg expression is
in Lsr (Eq. (7b) become individually undetermined, but too Iong;thergfore,v_vg only highlight its essential features for
when Lsr is properly handled as a whole, a regular value ©Ur PUrpose: in addition to the terms already acknowledged
arises for it. This is s0 because the Lapladiapis an invari- 25 Peing~1, there appeatq; (i=a, b),T's, as/lag| and the
ant (zero order tensor), and as such can be evaluated from anfirst and second) physical derivativesayf as andR; (i =a,
suitable pair of coordinatesq, £5), a condition thatholdstrue D). All these quantities appear along with factagsand 3
anywhere, but in particular around the umbilic point. in dimensionless terms. The termsi§ arise fromYp(¢) in
This can be illustrated by acknowledging that the zone Eq.(Al), while those im% arise from the remaining part of
around an umbilic point may be closely represented as aEq.(Al).
portion of a spherical surface. Employing for this zone any ~ The activity a will usually not vary too much ove§,;
pair of orthogonal coordinate&,(, &2) substituting &5, &p) in hence, we conservatively can assume that the scales of varia-
the coordinate system, we will be able to replace Egd) tion of as, ag, dag/ds, dag/ds (i =a, b) can be at most of the
and (9ewith 7 = Rokgi/(Rp — &n), (1=1, 2), whereR, is the same order of magnitude as the scale in the normal direction,
radius of curvature of the spherical surface. Nayy,will just Ag=agl|ag|.

%c [Yé(c) +(AsT8)Y7 () + (ks (a/s>> Y‘/’@)}

as
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We have assumed before that the scale of variatidg of
in the directionst; andé&p is O(Ry). This estimate can be
extended to the scale of variations of the derivatid@gos
(i=a, b;j=a, b).

We finally recall thatxg;| = O(1/Rm) has been previously
assumed.

All these considerations along withs<« Ry and
As < agllag| (Egs.(14d) and (15b)n the main text) allow
neglecting the terms img and write

A2LsH(Y) = O [ max s , S (A2)
(as/a’s)2 Rmlas/ag|

Appendix B

B.1. Evaluation of (dY/g.=o from Eqs.(17a)—(17c)of
the main text

Considering small values afs, the solution of Eqs(17)
can be expressed by a perturbation series of the form

Y =Yo(¢) + AsY1(¢) + o(1s) (B1)

where neithelYg nor Y1 depends ons. Accordingly,r(Y) is
expanded as

r(Y) = r(Yo) + ¥ (Yo)(Y — Yo) + - - -
=r(Yo) + A’ (Yo)Y1 + - - (B2)

wherer’ =dr/dY. Replacing EqgB1) and (B2)into Eqs(17)
and collecting terms of zero and first ordenig

2

Y
Zeroorder : ?20 = r(Yo) (B3a)
t=0: Yo=1,
{— o0 Yo — 0O, (dd—?) —0 (B3b)
Firstorder : 1 — 7 (Yo)Y1 = T d¥o + s (Yo)
a2 r(Yo)Y1 = dc asé“r 0
(B4a)
t=0: Y1 =0; {—>o0: Y1—0,
Y-
(dd—;) -0 (B4b)

Terms in ¢sag/as)?, (AsT's)?, (rsag/as)(AsY's) and higher

andg, can be alternatively taken as the independent variable.
By definingp=dYy/dz, Eq.(B3a)is re-written as:

dp

— | = r(Y,
P( dYo) r(Yo)
By separation of variables and considering H83b), we
obtain the solution

(BS)

p=—1(¥o)"/? (B6a)
Yo

1(Yo) = 2 f +(Y) dY (B6b)
0

Then

_(90) _ _
p(0) = ( @ );zo =-I (B7a)
I = [I(1))? (B7b)

To evaluate (¥1/d¢).=o, the left-hand side of EqB4a) is
expressed by:

d’y; d dr; d
P o= [ - 22)]

dz2 dYp de¢ dYp (B8)

Taking into account the definitiop=dYp/d¢ and Eq.(B5),
the identity(B8) can be checked by carrying out the differ-
entiation of the square brackets.

Replacing Eq(B8) in (B4a)and usingy = dYp/dz and Eq.
(B5) in the right-hand side of it,

d dr; dp ag\ , dp
— - _ Ty = 7T - -
dYo [p< d¢  d¥o 1” P (as> gUDdYo
Integrating both sides frop=0 (¢ — oo0) to Yo=1 (¢ =0)
and using the boundary conditio(B4b):

dr : ds\ (7O
p(0)<—1> = Ts/ pdYo+ (—S>/ ¢pdp
dc /o 0 as/ Jo

(B9)
Using integration by parts for the last integral:
p(0) 1 =0 1 [¢=0
/ tpdp = = sz’ - / pde (B10)
0 2 oo 2 {00

SinceYp — 0 as¢ — oo (Eq. (B3b)), its derivativep should
tend to zero faster thagT ! as¢ — oo. Hence, we can con-
clude that the first term in the right-hand side of E8{L0)is
zero. In turn, the second term can be written as:

150, 1t
—= d =—-f dYo
Z/HOOP (=3, 7

dimensionless terms are not being considered, so in practice

the truncated solutiolY =Yg+ AsY; will be valid for small
values of {sag/as) and (sY's).
The evaluation of (¥o/d¢).=0 from Eq. (B3) is well

known. In what follows, it is convenient to keep in mind

that Yy varies monotonically witlt and therefore bothyp

By substituting these results in HR9) and using Eq4B6a)
and (B7a)or p, y, p(0), we finally obtain:

(5) =[5 ()] 2o

(B11)
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Taking into account Eq¢B7a) and (B11) reaction scheme A> B — C, both the molar concentration of
B and the rate of the second reaction may be nil at the surface;
aY Yo Y1 .
_ ~|— + Ag|l — therefore they are not suitable as reference values. Also, we
9/ =0 9 /=0 9 /=0 defineF j = Nj/(D;j refCj ref); WwhereDj ref are reference values

1 (ag
=—NLh+Dis|Ts— 5| =
2 \as

. a .
where _V’szprj, ji=1...,J (C1)

1t /
12=—/ [1()]Y?dy
I1 Jo

We note thatin order to evaluateMgdd?),=o, Eq.(B11), there
was no need to find out an expression for the actual profile
Y1(2). As regards the analysis carried oufppendix A itis ) 1 9 (H .
however important quoting th& can be formally expressed V-Fj= Z Ea—fk (h_kFJ k) ;

that represent effective diffusivities. Conservation equations
)} (B12) become

where)@ =[DjCj/mj]ref. Employing the same coordinate sys-
tem €a, &b, £n) as in the main text, the divergence in EG1)
takes the form:

asY1="7sYr(¢) + (ds/as)Ya(¢). This arises by considering k
that Yp(¢) is a function of¢ independently determined and H = hahphy,; k=a,b,n;, j=1...,J (C2)
hence, EqqB4a) and (B4byonstitute a linear system fof o ) B o
with source terms proportional s and @g/as). Then, Eq. andF j, k is the physical component &} in the directiorg.
(B1) can be written as: . Assgme now that chgmlcal equilibrium is reached at a
e given distance (penetration depth) from the external surface,
. Sdg short enough to consider the pellet as a semi-infinite medium
¥'=1o(0) + (sTs)¥r(0) + ( a ) Ya(©) + ols) and to ignore the divergence over the surfaces parall§ to
(B13) (i.e., the surfaces defined )y = const.). The latter assump-

tion implies that the physical derivatives of concentrations in
the directionst; andé&y are negligible. The only significant
component of the flux will bd”;, (in the directions,). For

Besides, from Eq(B4) it is possible to conclude that the
functions Yy(¢) and Ya(¢) will have the unity as order of

magnitude. general anisotropic medi&;,, will depend on the physical
derivatives of concentrations in the three spatial directions,
Appendix C but as those in the directiordy, and &, are negligible, the

constitutive expression fdf ;, can be in practice reduced to

C.1. Analysis of the asymptotic behaviour for multiple J
reactions Fjn = — Z S <%) - —9,- E (C3)
’ M\ dgy 7 ds,

Conservation balances can be written at steady state for _
each of] reacting species v-N; =arj (j=1,...,J), where ~ Wherec=(cy, ..., cy)" anddj = (#s, ..., #j3)" is a vector of
N; andz;j are the flux and net consumption rate of spegies dimensionless transport coefficients (generically dependent
respectively. Eventually, one of these suffices can representon ¢ and position).
the heat flux and the net rate of heat consumption by the Itis assumed that valué} et have been defined in such a
chemical reactions. way that the order of magnitude of the largest coefficignt

We will assume that all the species enter the catalyst for eachj is the unity. Defining. =max{4;} and, for a local
from the same surfac®,, the fluxesN; are related (through  value ofasg, AS:A/aé/ 2, the penetration depth ang will be
constitutive equations) to the physical derivatives of the con- of the same order of magnitude, if the reference vafijes,

centrationsCy (k=1, ..., J) and the rates; depend orCy 7jref, Djref have been properly chosen. For the conditions
(k=1,..., J). Eventually, one of th&C; may correspond to  stated above, EQC2)is reduced to the following 1D problem
temperature. locally defined:

Assumptions (a) and (b) stated at the beginning of Section
2inthe main textare notimposed yet. In particular, this means 1
that the concentration field may not be uniform@nAlso, (1 — ¢hska)(1 — fhsk)
no stoichiometric condition is imposed on the ratgsThey de .
can be related through a single reaction or multiple reactions. < dc <(1 — thska)(1 — Chskp)? - d_;“) =d'vjrj (C4)
Let us introduce dimensionless variablgs= Cj/Cj ref,
rj =7j/7j ret, Where the reference valu€prer, 7j ref are such  where (stretched variable)= &n/is, vj = (A/2)? and with the
thatc; andr; will reach, and not largely exceed, values around boundary conditions:
the unity within the pellet. Proper reference values may not be
those making; = 1 andrj = 1 atS,. For example, foraseries ¢(=0: ¢=c¢s (C5a)
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dc To this end, note that on account of the small values
d_§ =0 (C5b) assumed foilgAs the approximation exp{2;As)s) is as

. _ _ precise as [ 2AsAs] for the activity term. Hence, we can
The dimensionless activity is defined in the same way as  write alternatively from Eq(C9)

in the main text and expressed according to expreg4iom)

/
1
a* =1+<a—s> ths+ =
as 2

—> 00!

d de de
/" — ¥ — ) — AsYst; - — ~ exp(—2¢rsAs)uir
ds 2. .. dc(" dc) 7ode 7

(as) (s + (c6) c10)

Consider foris restrictions similar to those introduced inthe  The following change of variables is now employed:
main text (Eqs(14d) and (15h)
1 — exp(={isAs)

as I=— (C11)
As < Rm, s KL |— (C7) sAs

s Hence, Eq(C10)turns into
As in the case of a single reaction, the conditiafdgd=0 in d@: - (de/d (Yo + A d
Eq.(C5b)will be already reached for practical purposes when ;- (de/dc) — s+ 4s) —i R LT (C12)

: . .o dc 1—CrsAs ’ . dz
¢ reaches a few units, provided that EG7) are satisfied. In
addition, we can neglect the terms in.§)? in Egs.(C4) and Considering restrictionfC7) and the transformatiofC11),

(C6). Then, Eq(C4) becomes after rearranging variableg and¢ will be very similar to each other up to values
d d LT d of around unity. Then, taking (3 ZAsAs)~1 in Eq.(C12)
— ( i _c> — A"/ s [1— 2rsAst]ujr; will not change the precision of the results and we finally
de \"7 d¢) 1-¢asYs 7 odg 8) obtain:

d(@; - de/d?) de
whereTs=ka+kp andAs=—(1/2)ag/as. We should keep dz —2s(Ys+ Ag)?; - dac vjrj (C13)

in mind that in Eq(C8) and in the rest of equations in this

appendix the sign~<” means that terms of lower order of S 1
magnitude have been neglected. large value” po if As<0, (AsAsg)™~ if As>0]. Therefore,

Considering that the second term of the left-hand side in @ccounting for EGS(CS), we can take in practice the follow-
Eq.(C8)is already of an order of magnitude less than the first "9 Poundary conditions for E4C13)

From Eq.(C11) when¢=0:% = 0. When¢ — oo: T— “a

term, we can approximate (L¢AsY's) = 1. Then, T=0: c=cs (C14a)
d de de A de
. (0,- . d_§> —astsd g M- Zsastlur; €9 fooe: =0 (C14b)

It is interesting to mention that for EGC9) (or (C4)) the We can also conclude from E¢C11)that (9 - dc/d¢) =0 =
fluxes Njn = Fn(Dj refCi ref) keep the same stoichiometric (g, . de/dZ)z_,- Therefore, the solution of EqéC13) and
relationships as the rates do, a condition that holds from — (c14) will directly allow the evaluation of the fluxes &.
the unidirectional nature of the problem, along with condi- Eq.(C13)is the desired result concerning the sukg € T's).
tions (C5). By considering the stoichiometric relationships A perturbation analysis, similar to that employed in
for a single reaction and the fluxes defined as in(Eg), the Appendix Bfor a single reaction, can be formally set out
procedure outlined in Sectidhof the main text can be car- ¢4, Eq. (C13), by taking f.s(As+Y's)] as the perturbation

ried out to obtain, atthe end, the paramete(Eq. (1d) and  parameter. The solution will show the form:
the relationships between the concentration of the different

species and variablé Then, it will be possible to recognize ¢ = ¢o(2) + c1(O)As(As+ Ts) + - -- (C15)
that Eq.(17a)is a special case of E(C9).

It is obvious that in Eq(C9) the quantitie"s andAs do
not occur in an additive way. The same happened with the
equivalent equatiofL7a)in the main text. However, the pro- (€15} @ndNis high= Dj refCi re(1/As)(#; - de/d¢)z_ can be

wherecy, ¢ will also depend on kinetic and transport param-
eters and ows. The value ¢; - dc/dZ)E:O follows from Eq.

cedure followed iPAppendix Bto obtain the flux ag, from evaluated and expressed as:
Eq.(17a)led to conclude that the main effects of both parame- 1 1o
ters take place additively, i.\as highdepends onX(’s +As), Njsnigh = D refCjref [X Il,jas/ — DL (Ys+ As)} (C16)

Eq.(18)in the main text. Unfortunately, the whole procedure

in Appendix Bcannot be followed one-to-one for multiple where the coefficient$, ; and I ; depend on kinetic and
reactions (because there is more than one independent stateansport properties and @a.

variable). Nonetheless, it is still possible to transform Eq.  We recall at this point that assumptions (a) and (b) stated
(C9) and confirm that for multiple reactions both parameters in Section2 of the main text are not required for Egs.
also exert their main effects additively. (C13)—(C16)to hold. Egs.(C13) and (Cl4xan be solved
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on a local basis oves, to obtainN;js high, Which can be inte-
grated afterwards.

Instead, to obtain expressions like E2R)in the main text
for R; high, we should impose assumptions (a) and (b) that
allow I, ; and I ; (Eq. (C16) to be uniform onS,. Then,
by integratingN;s nhighoverS, and using definition§20) and
(21) in the main text

1/2
D reiC}, refSp(as/ )avll,j

et

Thus, Eq.(C17) clearly shows that the second order cor-
rection in R; high depends, as regards activity profiles and
geometry, on the same paramefteas for the case of a single
reaction (cf. Eq(22) in the main text).

The coefficientdy ; and Iz ; will no longer available in
a close way and should be evaluated numerically. However,
the following way is better for actual computationsifhigh.
Dividing Eq.(C17)by S and rearranging

I i A
Rjnigh = ——’]—F],

I ;¢

j=1....7 (C17)

R j high

So = (Njs.high) a4y
1 1/2
= Dj,reij,ref Xll,j(as )av - IZ,j(TS + AS)av
(C18)

Recalling the relation between E¢€.13) and (C16)we can
appreciate from EqC18)that (Njs highav (and hence ; hign)
can be computed from the numerical solution of Eg13)
with As = A/(ag *)ay and (F's+As) = (T's + A)av.

We finally mention that an alternative way to express Eq.
(C13)is by collecting the terms in the left-hand side:

diS(O(@; - de/d0)]

o _ o rs(Ys+Ag)T
SO @ virj, S@)=e (C19)

S.D. Keegan et al. / Chemical Engineering Journal 110 (2005) 41-56
Eq. (C19) clearly describes 1D diffusion and reaction in a

(hypothetical) catalytic body with cross-section area varying
according taS(2).
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